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This talk focuses on CGYRO

• There are many tools used in Fusion research
• This talk focuses on CGYRO
• An Eulerian fusion plasma

turbulence simulation tool
• Optimized for multi-scale simulations
• Both memory and compute heavy

Experimental methods are essential for gathering new
operational modes. But simulations are used to validate
basic theory, plan experiments, interpret results on
present devices, and ultimately to design future devices.

E. Belli and J. Candy
main authors

https://gafusion.github.io/doc/cgyro.html
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CGYRO inherently parallel

• Operates on 5+1 dimensional grid
• Several steps in the simulation loop,

where each step
• Can cleanly partition the problem 

in at least one dimension
• But no one-dimension in common 

between all of them
• All dimensions compute-parallel

• But some dimension may rely
on neighbor data from previous step
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• Operates on 5+1 dimensional grid
• Several steps in the simulation loop,

where each step
• Can cleanly partition the problem 

in at least one dimension
• But no one-dimension in common 

between all of them
• All dimensions compute-parallel

• But some dimension may rely
on neighbor data from previous step

Easy to split among several
CPU/GPU cores and 
nodes

Most of the compute-intensive
portion is based on small-ish 2D FFTs

Can use system-optimized libraries
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CGYRO inherently parallel

• Operates on 5+1 dimensional grid
• Several steps in the simulation loop,

where each step
• Can cleanly partition the problem 

in at least one dimension
• But no one-dimension in common 

between all of them
• All dimensions compute-parallel

• But some dimension may rely
on neighbor data from previous step

Requires frequent TRANSPOSE operations
i.e. MPI_AllToAll

Easy to split among several
CPU/GPU cores and 
nodes

Exploring alternatives
but none ready yet
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Cori and Perlmutter

• Cori was long a major CGYRO compute resource
• And we were very happy with KNL CPUs
• Lots of (slower) cores was always better than fewer marginally-faster cores

• CGYRO was ported to GPUs first for ORNL Titan
• Then improved for ORNL Summit

(Titan’s K80’s have severe limitations, like tiny memory and limited comm.)

• Deploying on Perlmutter (GPU partition) required just a recompilation
• It just worked
• Most of the time since spent 

on environment optimizations, e.g. NVIDIA MPS Already had 
experience with A100s 
from Cloud compute
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CPU vs GPU code paths

• CGYRO uses a OpenMP+OpenACC(+MPI) parallelization approach
• Plus native FFT libraries, FFTW/MKL on Cori, cuFFT on Perlmutter

• Most code identical for the two
• Enabling OpenMP or OpenACC based on compile flag
• A few loops have specialized OpenMP vs OpenACC implementations

(but most don’t)
• cuFFT required batch execution (reminder, many small FFTs)

• Efficient OpenACC requires careful memory handling
• Especially when interacting with IO / diagnostics printouts
• Was especially a problem while porting pieces of the code to GPU

(now virtually all compute on GPU, partitioned memory just works)
9



Importance of great networking

• CGYRO communication intensive
• Large memory footprint + frequent MPI_AllToAll
• Non-negligible MPI_AllReduce, too

• First experience on Perlmutter with Slingshot 10 a mixed bag
• Great compute speed
• But simulation bottlenecked

by communication

~30%

~70%

Benchmark sh04 case 
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Importance of great networking

• CGYRO communication intensive
• Large memory footprint + frequent MPI_AllToAll
• Non-negligible MPI_AllReduce, too

• First experience on Perlmutter with Slingshot 10 a mixed bag
• The updated Slingshot 11 networking makes us much happier
• But brings new problems
• SS11 does not play well with MPS

• Gets drastically slower when mapping multiple MPI processes per GPU
• Something we are currently relying on for optimization reasons

• Not a showstopper, but slows down our simulation in certain setups
• NERSC ticket open, hopefully can be fixed
• But we are also working on alternatives in CGYRO code 12



Disk IO light

• CGYRO does not have much disk IO
• Updates results every O(10 mins)
• Checkpoints every O(1h)

• Uses MPI-mediated parallel writes
• Only a couple files, one per logical data type
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A comparison to other systems
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Single GCP node faster
than 16x Summit nodes

Compute-only
Total time

SS 10

Presented at PEARC22 - https://doi.org/10.1145/3491418.3535130

Looking at compute-only,
Perlmutter’s A100s about 
twice as fast as Summit’s V100s

https://doi.org/10.1145/3491418.3535130


Summary and Conclusions

• Fusion CGYRO users happy with transition from Cori to Perlmutter
• Much faster at equivalent chip count
• Porting required just a recompile

• Perlmutter still in deployment phase
• Had periods when things were not working too great
• But typically transient, hopefully will stabilize
• Waiting for the quotas to be raised (128 nodes is not a lot for CGYRO)

• Only known remaining annoyance is SS11+MPS interference
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